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ODbjectives

e To discussthe relevance of measures of complexity to
physiology

» To describe the uses and limitations of entropy-based
measures of complexity, including Approximate Entropy
(ApEn)/Sample Entropy (SampEn), and Multiscale
Entropy (M SE)

« To Introduce a multiscale measure of time irreversibility

» To describe the application of these metricsto clinical
datasets in aging and heart disease and implications for
modeling



M otivation for New Approaches

o A system’s complexity will be reflected in the dynamical
fluctuations generated by the free-running conditions

Complexity (healthy systems) > Complexity (pathologic systems)

e Healthy systems operating, far from equilibrium, have
greater adaptability and functionality than pathologic
systems, therefore

e Disease, aging, drug toxicities should degrade
complexity




Challenges

What is complexity and how to measure it?

NoO consensus on definition!

Currently, avariety of entropy-based algorithms are
used for computation, such as Approximate Entropy
(ApEn) and Sample Entropy (SampEn)



Part 1. Entropy-based Complexity M easures

e Approximate Entropy” (ApEn):

Natural logarithm of the relative prevalence of repetitive patterns of length m
compared with those of length m+1

e Sample Entropy ™ (SampEn) - arefinement of ApEn

e ApEn and SampEn, both quantify the regularity of a time series.
More irregular (less predictable), more “complex”

e Both widely used for physiologic and other data analysis

“Pincus SM. Proc Natl Acad Sci 1991,88:2297
** Richman JS, Moorman JR. Am J Physiol Heart Circ 2000;278:H2039
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Multiscale Entropy Analysis (M SE)

Madalena Costa, Ary L. Goldberger and C.-K. Peng
Beth |srael Deaconess Medical Center, Boston, USA

A detailed description of the multiscale entropy algorithm and its application can be
found in:

» CostaM., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of biologic
signals. Phys Rev E 2005;71:021906.

» CostaM., Goldberger A.L., Peng C.-K. Multiscale entropy analysis of physiologic
time series. Phys Rev Lett 2002; 89:062102.

http://www.physionet.org/physi otool mse/tutorial/



Sample Entropy (SampEn)

In (patterns of length m) — In (patterns of length m+1)
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Other Problems

e ApEn (SampEn) indicate higher entropy for:
1. Uncorrelated white noise than for correlated (1/f ) noise
2. Atrial fibrillation than for normal sinus rhythm

e However,

1. 1/f noiseisinherently more complex than white noise

2. Atria fibrillation may be physiologically less complex
than normal sinus rhythm



Complexity: 1/f vsWhite Noise

2.8 » Entropy for coarse-grained white
[ noise time series monotonically
decreases with scale

1/f noise

» Entropy for coarse-grained 1/f
time series remains constant for all
scales consistent with the fact that
1/f noise has complex structures

c 4 8 12 16 X across multiple scales

SampEn

Scale factor

1/f noise more complex than white noise




Strategy

e Meaningful complexity measure should account for
multiple time scales inherent in healthy dynamics.

« Zhang proposed such ameasure. But, it does not
readily apply to “real-world” time series since it
requires a large amount of almost noise-free data.

« We" introduced a new multiscale entropy (MSE)
method motivated by Zhang and Pincus.

* JPhys|1 1991;1:971
** Phys Rev Lett 2002;89:068102 & Phys Rev E 2005; 71:021906



Multiscale Entropy (M SE) Algorithm

Coarse-grain the time series
Calculate SampEn for each coarse-grained series

Plot as afunction of scale factor

IR

Analyze the M SE curve profiles

Refer ences:
M. Costa, A.L. Goldberger, C.-K. Peng. Physical Review Letters 2002;89:068102
M. Costa, A.L. Goldberger, C.-K. Peng. Physical Review E 2005;95:198102



Coarse-graining Procedure

Scalel: Original heartbeat time series

Coar se-graining schematic
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Multiscale Entropy (M SE) of Heart Rate Dynamics
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M SE Analysisfor Healthy Y oung vs. Elderly

Complexity of heart rate variability decreases with aging
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Beyond T raditional HRV: W hich is Physiologic ?
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M SE: Physiologic vs Surrogate Data

Heart rate (bpm)
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Thus, the physiologic time
seriesismore complex than
the phase randomized
surrogatetime series




| imitations

 Time serieslength
e Stationarity considerations
o CQuitlier effects

« Timeirreversibility and certain other properties not
accounted for



Other Applications: Binary Time Series

Are non-coding DNA sequences more complex than coding sequences?
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Conclusions: Part 1

 Conventional complexity (single scale) measures
=> midleading results

(e.q., atrial fibrillation more complex than sinus
rhythm)

 Multiscale entropy (MSE)
- 1/f noise more complex than white noise

- healthy heart rate dynamics more complex than
pathologic and aging



Pt. 2: Back tothe Future:

Multiscale Time Irreversibility (Time Asymmetry)



Multiscale Timelrreversibility (MTI1): Background

o Definition: lack of invariance of the statistical
properties of asignal under the operation of time
reversal

 Fundamental property of non-equilibrium dynamics
related to the unidirectionality of energy flow

e Current methods are single scale-based and |ead to
Inconsistent results in physiologic signal analysis

Costa, Goldberger, Peng. Phys Rev L ett 2005;95:198102



Multiscale Timelrreversibility (MTI): Hypotheses
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« Timeirrevershility
IS greatest for healthy
physiologic dynamics,
which have the highest
adaptability

 Timeirrevershility
decreases with aging and
disease



Multiscale Time lrreversibility (M T1): Algorithm

e Coarse-grain time series

e Quantify the degree of temporal irreversibility for
each coarse-grained time series

* Integrate the values of temporal irreversibility for
each coarse-grained time series over arange of
time scales



Timelrreversbility of Interbeat Interval Time Series

1. For each coarse-grained time series, we:

I. Calculate the difference between consecutive data
points

Il. Calculate the percentage of positive p(y, >0) and
negative p(y, <0) increments

Il. The asymmetry index A.(t) is calculated by the
eguation:

P(y; >0) In P(y, >0) - P(y; <0) In P(y, >0)

P(y; >0) In P(y; >0) + P(y,<0) In P(y, >0)

Ai(t) =

2. Over arange of time scales the asymmetry index
Is calculated by the equation: S_, Ai(t ).



Multiscale Time Asymmetry M easure

FPHYSICAL REVIEW LETTERS

Broken Asymmetry of the Human Heartbeat: Loss of Time Irreversibility in Aging and Disease

,
Madalena Costa, ' Ary L. Golclhergen' and C.-K. Peng'
' Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachuyetts 02215, UUSA
“Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon,
l'.'l:.'.'n'.'l.'lr-' Crrande, 1749076 Liston, Portueal
(Received 14 June 2005)

Time irreversibility, a fundamental property of nonequilibrium systems, should be of importance in
assessing the status of physiological processes that operate over a wide range of scales. However,
measurement of this property in living systems has been limited. We provide a computational method
derived from basic physics assumptions to quantify time asymmetry over multiple scales and apply it to
the human heartbeat time series in health and disease. We find that the multiscale time asymmetry index is
highest for a time series from young subjects and decreases with aging or heart disease. Loss of time
irreversibility may provide a new way of assessing the functionality of living systems that operate far from
equilibrium.

Phys Rev L ett, 2005;95:198102.



Timelrreversibility Analysis. Heart Rate Dynamics
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Beyond T raditional HRV: Which is Physiologic ?
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Applying New Multiscale M easures

A

120
110
100

vl

Heart rate (bpm)

i)
50

120
110
100
L
sl

Heart rate (bpm)

o)
50

s

Multiscale Time Asymmetry

2000 * Physiologic:

Asymmetry index = 3.4
e Surrogate:

Asymmetry index = 0.5

i Mean = 86.8, SD = 14.8
T

1 1 1 1 1 1 1 1 1 1 1 1 1
0 400 SO | 200 | 40K

Beat number

r Mean = 86.8, SD = 14.8
k

| 1 1 | 1 1 1 | 1 1 1 | 1
0 400 SO | 200 | 40D

A: Physiologic

Beat number

2000

B: Surrogate (phase randomized)

Thus, the physiologic time series is more complex and time asymmetric than the surrogate



Pt. 3: Modeling Implications

Do current models of cardiac control account for
time irreversibility and multiscale complexity
properties of physiologic signals?

We analyzed physiologic (n=26) and model
generated (n=24) time series from Computersin
Cardiology Conference (CinC)/PhysioNet
Challenge 2002: Modeling RR Time Series
(www.physionet.org)



Timelrreversbility: CinC/PhysioNet 2002 — Challenge
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Physiologic heart rate signals are more time irreversible
than model generated



Conclusions

 Multiscale entropy and time irreversibility probe
fundamental features of complex variability

e Physiologic models need to account for these
features and currently do not
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